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The Hamiltonian formalism for surface waves associated with the method of Watson
& West (1975) is extended to handle the case of spatially varying bottom depth.
This description models moderately nonlinear waves over a wider range of scales
than Boussinesq-type approximations. A pseudospectral simulation code has been
developed using this formalism in two horizontal dimensions. Computations using
the model compare well with measurements of waves over a bar, diffractive focusing
by topography, and shoaling of solitary waves. Waveforms are computed accurately
until near the point of breaking.

1. Introduction
Accurate modelling of surface wave dynamics in coastal regions has been the goal

of much recent research, which has been summarized in surveys by Mei & Liu (1993),
Dingemans (1997), and Kirby (1997). The richness of coastal wave dynamics arises
from the large amplitudes of the waves and the wide variations in depth. The interplay
of the resulting refraction, diffraction, and nonlinear wave interaction is most often
treated by approximations of the Boussinesq type. Such models are valid when the
wavelengths are long compared to the local depth, but misrepresent the dispersion
and harmonic content of shorter waves.

The subject of the present work is an alternative description which simultaneously
captures both short and long waves of moderate amplitude, and which affords a means
for efficient and accurate computation. This approach is based on a Hamiltonian
formalism using the expansion method of Watson & West (1975), which has been
fruitful in studies of deep-water waves. An advantage of Hamiltonian formulations
is their clear manifestation of conservation laws. The Boussinesq equations and
related dynamical models can be expressed in terms of Hamiltonians, as shown by
Mooiman (1991), Yoon & Liu (1994), and Dingemans (1997). Radder (1992) and Choi
(1995) have expressed surface wave dynamics using other Hamiltonian formulations,
without a shallow-water approximation. The latter models differ in both analytic and
computational details from the present scheme. Wright & Creamer (1994) studied the
eikonal limit of a Hamiltonian description similar to the following. The formalism
developed here is well suited to numerical work, and may also be useful for analytic
studies of nonlinear wave interactions in the presence of non-trivial topography. It is
most closely related to the Dirichlet–Neumann formalism of Craig & Sulem (1993),
whose connection to other shallow-water models has been discussed by Craig &
Groves (1994).
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In the next section, I review the operator expansion formalism and extend it to
finite, varying depth. I then discuss some limiting cases and other properties of the
formalism. Some results of computer simulations based on the new formalism are then
presented. These demonstrate that the scheme is accurate for a variety of problems
involving wave nonlinearity, shoaling, and diffraction. This study is limited to mild
bottom slopes; further analysis of the approximations used here, including limitations
on bottom roughness, will be presented elsewhere.

2. Operator expansion formalism
We begin with a Hamiltonian formulation of surface-wave dynamics involving

irrotational flow in an incompressible, inviscid fluid. The Hamiltonian formulation is
due to Zakharov (1968), Broer (1974), and Miles (1977); the operator version used
here was introduced by Milder (1977). I employ the methods of Watson & West
(1975), and notation similar to that of Milder (1990). The kinematic and dynamical
boundary conditions on surface height ζ(x, t) and surface potential φ(x, t), specified
as functions of horizontal Cartesian coordinates x, are

∂ζ

∂t
+ ∇φ · ∇ζ = w[1 + (∇ζ)2], (2.1)

∂φ

∂t
=

1

2
w2[1 + (∇ζ)2]− 1

2 (∇φ)2 − gζ, (2.2)

where ∇ is the horizontal gradient and g is gravitational acceleration. The vertical
velocity w is determined from φ by a non-local linear operator (w = Dφ), which is
described in detail below. The fields ζ and φ are a canonically conjugate pair for the
Hamiltonian

H =
1

2

∫ (
φKφ+ gζ2

)
dx, (2.3)

where the normal differential operator is defined by

K = [1 + (∇ζ)2]D− (∇ζ) · ∇. (2.4)

We proceed by developing D and K as operator series in powers of ζ and of the depth
deviation from a constant value. When H is truncated at a given order, the canonical
equations

∂ζ

∂t
=
δH

δφ
and

∂φ

∂t
= −δH

δζ
(2.5)

constitute a consistent dynamical model, which enjoys the properties (and shortcom-
ings) described by Milder (1990). In particular, nonlinear wave–wave interactions are
described quite accurately. This scheme has been used for simulations of waves on
deep water, as described by West et al. (1987).

2.1. Expansion of the vertical derivative

It remains to specify a useful form for the operator D. The surface potential φ is the
restriction of a volume potential Φ(x, z) to the surface z = ζ(x). Let φ0(x) denote the
potential at z = 0. Let the bottom of the fluid region be defined by

z = −h(x) = −h0 − δh(x), (2.6)
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where h0 is a constant reference depth. Suppose that Φ is sufficiently smooth to have
a well-behaved Fourier expansion. Let F(x, z; h) denote the solution of

(∇2 + ∂2
z )F = 0,

F(x, 0) = φ0(x),

∂zF + ∇h · ∇F = 0 at z = −h.

 (2.7)

Then for smooth

φ0(x) =

∫
dk eik·xf(k), (2.8)

where k = k/(2π)2, we have

F(x, z; h0) =

∫
dk eik·x cosh k(z + h0)

cosh kh0

f(k). (2.9)

If the potential is decomposed according to

Φ = F(x, z; h) = F(x, z; h0) + δF(x, z), (2.10)

then δF is a potential satisfying the boundary conditions

δF = 0 at z = 0,

(∂z + ∇δh · ∇)δF = −(∂z + ∇δh · ∇)F(h0) at z = −h,

}
(2.11)

so it has the expansion

δF(x, z) =

∫
dk eik·x sinh kz

cosh kh0

δf(k). (2.12)

The coefficients δf(k) may be computed from the boundary condition:∫
dk eik·x[k(cosh kδh+ tanh kh0 sinh kδh)

−i(∇δh) · k(tanh kh0 cosh kδh+ sinh kδh)
]
δf(k)

=

∫
dk eik·x[k sech kh0 sinh kδh

− i(∇δh) · k sech kh0 cosh kδh
]
f(k). (2.13)

Equation (2.13) is exact. For moderate values of δh/h0, it may be solved by iteration.
The presence of sech kh0 in the operators on the right-hand side makes the approxi-
mation good even for large kδh. For future reference, it will be convenient to define
an operator H by the solution of (2.13):∫

dk eik·xδf(k) sech kh0 = H

∫
dk eik·xf(k) ≡ Hφ0(x). (2.14)

To second order in δh, it is given by

H ∼ (sech kh0)op k
−1
[
1− δh (k tanh kh0)op + (∇δh) · ∇

(
k−1 tanh kh0

)
op

]
×[δhk2 − (∇δh) · ∇] (sech kh0)op (2.15)

= − (sech kh0)op k
−1[1 + ∇ · δh∇

(
k−1 tanh kh0

)
op

]∇ · δh∇ (sech kh0)op . (2.16)
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Here and in the following we make use of pseudodifferential operators denoted by
their representation in wavenumber space:

(a(k))op f(x) =

∫
dk dx′eik·(x−x′)a(k)f(x′), (2.17)

and kp = (kp)op,
Following Milder, I introduce a vertical differential operator which maps φ0 into

the vertical velocity on the mean plane:

D0φ0(x) = ∂zΦ(x, z = 0). (2.18)

By direct substitution, we find that

D0 = (k tanh kh0)op + kH

∼ (k tanh kh0)op − (sech kh0)op ∇ · δh∇ (sech kh0)op . (2.19)

2.2. Extension to finite-amplitude waves

Next we extend the vertical differential operator up to an interface at z = ζ(x). The
potential on the interface is

φ(x) = Φ
(
x, ζ(x)

)
=

∫
dk eik·x[f(k)(cosh kζ + sinh kζ tanh kh0) + δf(k) sinh kζ sech kh0]

= [(cosh kζ)op + (sinh kζ tanh kh0)op + (sinh kζ)op H]φ0, (2.20)

where operators such as (cosh kζ)op are defined by an operator series expansion
in which pointwise multiplication by powers of ζ occurs after application of the
appropriate Fourier space operator:

(cosh kζ)op =

∞∑
n=0

1

(2n)!
ζ2nk2n. (2.21)

The vertical velocity component at the interface is

Dφ = [(cosh kζ k tanh kh0 + sinh kζ k)op + (cosh kζ k)op H]φ0. (2.22)

We can invert the operator equation (2.20) iteratively:

φ0 ∼ φ− ζ (k tanh kh0)op φ− ζkHφ− 1
2ζ

2k2φ+ [ζk((tanh kh0)op + H)]2φ. (2.23)

Let us introduce the operator

H′ = (tanh kh0)op + H. (2.24)

Then the operator D to second order in ζ is

Dφ ∼ kH′φ+[ζk2−kH′ζkH′]φ+[−ζk2ζkH′− 1
2kH

′ζ2k2+ 1
2ζ

2k3H′+kH′(ζkH′)2]φ. (2.25)

In the case of two-dimensional waves over uniform depth, (2.25) leads to the model
of Craig & Sulem (1993), as I show in the Appendix.

In the deep water limit, H′ becomes the identity operator, so we have

lim
h0→∞

D ∼ k+ ζk2 − kζk− ζk2ζk− 1
2kζ

2k2 + 1
2ζ

2k3 + kζkζk, (2.26)

which coincides with Milder’s formula.
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Figure 1. Fractional errors in phase speed over constant depth: c1 is the phase speed obtained from
(2.19) with constant δh; c is the true value obtained from (3.3). Solid line: h = 1.414h0; dashed line:
h = 0.707h0; dotted line: h = 1.189h0; chained line: h = 0.84h0.

3. Properties of the model
Small-amplitude surface waves are described by the system

∂tφ0 + gζ = 0, ∂tζ − D0φ0 = 0. (3.1)

Thus linear surface waves evolve according to the equation

∂2
t φ0 + gD0φ0 = 0. (3.2)

For a level bottom at depth h0, this is equivalent to the physically correct dispersion
relation

ω2 = gk tanh kh0. (3.3)

For a constant depth h not equal to the reference depth h0, the above formalism
approximates the linear wave dispersion relation by a Taylor series in δh. This differs
from the Boussinesq approximation, which involves an expansion in h itself. Hence the
new description can be more accurate than the Boussinesq approximation for waves
in the regime kh > 1. Figure 1 shows the fractional errors in phase speed associated
with the operator expansion truncated at first order in δh (i.e. that given by (2.19)
with constant δh), as a function of kh. If the range of depths is sufficiently large,
interpolation among multiple reference depths further improves the accuracy. Details
of such an interpolation scheme are discussed below. The Hamiltonian formulation,
in combination with the adiabatic invariance of wave action, ensures that accuracy of
dispersion leads to similar accuracy of linear shoaling coefficients, which are awkward
to express analytically.

In the limit of small h0 and moderate bottom slopes, the operator expansion
dynamics are asymptotically equivalent to Airy’s shallow-water equations. Specifically,
upon taking h0 = 0 and retaining terms of first order in δh and second order in ζ, we
have

∂ζ

∂t
+ ∇ · [u(ζ + δh)] = O(δh2, ζ3), (3.4)
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∂u

∂t
+ u · ∇u+ g∇ζ = O(δh2, ζ3), (3.5)

where u = ∇φ. This model is widely used to describe very long-wavelength phenomena.
The operator expansion may be interpreted as a slope expansion of the resolvent of

a boundary integral operator of potential theory; Milder (1996) presented details of
such an interpretation in the related context of the Helmholtz equation. This suggests
that the expansion in (2.16) should be useful for bottom slopes up to nearly unity. An
analysis of how accuracy depends on topography will be presented elsewhere. The
method is unable to reach similarly large surface slopes for dynamical reasons.

The truncated Hamiltonian, like the deep-water one of Milder (1990), is not, in
general, positive definite. More precisely, the second variation δ2H{ζ0, φ0} around
a reference solution ζ0, φ0 may have negative eigenvalues when ζ0 is sufficiently
complicated. This is not a problem for small-amplitude waves around the still-water
equilibrium; as mentioned above, linear waves over uniform depth obey the correct
dispersion relation for all wavelengths. Moreover, the studies of waves of moderate
amplitude discussed below have not been afflicted by this failure. However, when there
are very steep long waves, and if much shorter waves are included in a simulation,
the non-physical short-wavelength instability described by Milder arises. When the
short-wave amplitudes also become sufficiently large, there is an explosive secondary
instability which terminates a simulation. (Numerical computation shows that the
lowest eigenvalue of the truncated K operator becomes negative just before this
catastrophe. This eigenvalue is shared by δ2H , so the model dynamics suffers from a
finite-time singularity.) This limits the ability of the operator expansion algorithm to
compute waves close to physical breaking, as described below.

4. Numerical applications
The dynamical model described above has been implemented in a fortran code,

handling nonlinearities up to fourth order (fifth-order terms in H) and up to second
order in δh. For the computations described below, only first- and second-order
nonlinearities were retained, since preliminary tests showed no significant changes
when higher orders were included. The dependent variables in the code are the
Fourier amplitudes of ζ and φ. The code employs periodic boundary conditions, so
that the basic operators like kp and (tanh kh0)op are multiplicative. Spatial products in
the advection terms and in the operator expansion are computed by the pseudospectral
method, using fast Fourier transforms and a fully dealiased spatial grid. Time-stepping
is handled by a variable-step-size variable-order Adams–Bashforth–Moulton scheme
derived from the work of Shampine & Gordon (1975). (I chose this method to
minimize time-stepping errors for validation purposes; for most applications a low-
order predictor scheme should suffice.) The examples include simulations of harmonic
waves, so forcing and damping terms representing an oscillating pressure source and
localized friction,

f(x) cosΩt− d(x)φ, (4.1)

are added to the right-hand side of (2.2), the Bernoulli equation. The code was written
for two horizontal dimensions. The efficiency could be improved for one dimension,
or for reflection-symmetric domains, but such optimizations were not implemented
for this study. Computations were done on a workstation with typical performance
of 50 megaflops. The following examples typically required about 2000 time steps.
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One-dimensional computations with 512 Fourier modes each required less than an
hour. A two-dimensional computation with 512×256 modes required about 20 hours.

The applications described below all involve depths which are shallow or inter-
mediate compared to the wavelengths. The present algorithm contains the method
described by West et al. (1987) as a limiting case, so it enjoys the accuracy which they
reported for deep-water waves.

4.1. Interpolation among reference depths

When the range of depths exceeds about one octave, accuracy is enhanced by using
several reference depths, {hj; j = 1, . . . , Nh}, in the leading-order operator D0, with
an interpolation scheme. (The reason behind this is the inadequacy of a first- or
second-order Taylor expansion of the hyperbolic tangent over a wide domain.) In the
code I have simply used the formula

D0f(x) =

(
[h(x)− hn]D0{hn+1}f(x) + [hn+1 − h(x)]D0{hn}f(x)

hn+1 − hn

)
, (4.2)

for x such that h(x) ∈ [hn, hn+1]. The set of reference depths used in the code forms
a geometric series with an incremental factor of

√
2, i.e. two values per octave of

depth variation. One sees from figure 1 that this ensures that the fractional error in
dispersion frequency over a locally flat bottom nowhere exceeds 1%. (It turns out to
be computationally preferable to truncate at first order in δh and employ additional
depths rather than to retain higher-order terms. Moreover, this avoids difficulties
associated with a discontinuous bottom slope. I have performed some computations
at O(δh2) for cases like those shown below, but with smooth bottoms. For the mild
slopes considered here, the results are barely distinguishable from the first-order ones.)

An interpolation scheme of this sort violates the spirit of the operator expansion
itself, in that it uses local operations to approximate intrinsically non-local operators
of potential theory. I do not have a formal justification for this approach, but the
following applications demonstrate its practical utility.

4.2. Waves over an underwater bar

The first example involves time-harmonic waves of moderate amplitude propagating
over a bar. Over the bar, the amplitude increases so that bound harmonics are
generated; the harmonics propagate freely beyond the bar. In this example, all
fields vary in only one horizontal direction (x). Details are taken from Dingemans
(1994, 1997), who compares experimental results with several other numerical models.
This experiment is particularly difficult to simulate because it includes nonlinear
interactions up to the third harmonic and requires accurate propagation of waves in
both the shallow and intermediate-depth regimes over a wide range of depths. The
bottom geometry, illustrated in figure 2, is given by

h(x) =


0.4− 0.05(x− 6), 6 6 x 6 12
0.1, 12 6 x 6 14
0.1 + 0.1(x− 14), 14 6 x 6 17
0.4 elsewhere.

(4.3)

All lengths and times here are in Dingemans’ scaled units (2 m,
√

2 s) to facilitate
comparisons with his work. The experiment was performed under three conditions:
A – incident wave period 2.02 and trough-to-crest waveheight 0.02; B – period 2.525
and waveheight 0.029; C – period 1.01 and waveheight 0.041.
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Figure 2. Geometry of the bar experiments, after Dingemans (1994).
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Figure 3. Surface height [×100] vs. time (in scaled units) at various locations, for waves over a bar
as in an experiment at Delft Hydraulics (Dingemans 1994). Case A: the incident wave period is
2.02, and the waveheight in the region before the bar is 0.02. Solid lines: computed by the present
algorithm; dashed lines: experimental data. (a) x = 2; (b) x = 12.5; (c) x = 13.5; (d) x = 14.5; (e)
x = 15.7; ( f ) x = 17.3; (g) x = 19; (h) x = 21.

For the numerical model, waves are generated by an oscillating source localized
around x = −4 and damped by friction acting only in the neighbourhood of x = 37.
The computational domain had a period of 51.2 units. For conditions A and B, 254
Fourier modes (127 in each direction) were used, with a spatial grid of 512 points.
For condition C, 510 modes and 1024 grid points were used.

Time histories of surface height ζ at various locations are shown in figures 3–5.
The origin of time for the simulations has been shifted so that the wave crests match
the measurements for the gauge at x = 2. The small delay between measured and
model crests at other locations is a measure of dispersion error in the computation.

The simulations compare well with the experimental measurements in all cases.
For condition A, shown in figure 3, the present scheme performs similarly to the
Hamiltonian method of Radder (1992), and to a boundary-element model, both
shown by Dingemans (1994, 1997). The latter are presumably more accurate than
the present model, but are difficult to extend to three-dimensional problems. These
three schemes all handle this problem at least as well as Boussinesq-type models, and
show similar (so far unexplained) discrepancies from the experiments. The operator
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Figure 4. As figure 3 but for case B: the incident wave period is 2.525, and the waveheight in the
region before the bar is 0.029.
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Figure 5. As figure 3 but for case C: the incident wave period is 1.01, and the waveheight in the
region before the bar is 0.041.

expansion method works well even for case B (figure 4), in which the physical wave
forms a spilling breaker over the bar. It also correctly represents the asymmetry of
the shorter waves in case C (figure 5), for which Boussinesq-type models are less
successful. I have not attempted to model an experimental wavemaker in detail; thus
there are small discrepancies in the harmonic content of the incident waves, as may
be seen in figures 3(a), 4(a), and 5(a).
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Figure 6. Geometry used for the solitary wave computations, after Grilli et al. (1994).
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Figure 7. Profiles of a solitary wave shoaling on a plane slope. The initial amplitude is 0.3h0 and
the slope is 1:15, with a toe at x = 0. Dimensionless times t′ = t(g/h0)1/2: (a) 0.2; (b) 3.3; (c) 6.1;
(d) 8.3; (e) 11.1.

4.3. Shoaling of solitary waves

Grilli et al. (1994) studied the evolution of solitary waves on sloping plane beaches.
They demonstrated the accuracy of a boundary-element potential flow model by
comparing its predictions to experimental measurements. Wei et al. (1995) tested an
extended Boussinesq model of these waves against the same boundary-element model.
The geometry of these simulations is shown in figure 6; a flat bottom of depth h0 is
imposed for x < 0, and a slope with tangent s for x > 0. For the operator expansion
the topography is symmetrically extended by reflection through x = L > 1/s. Initial
conditions are generated as follows. The surface height and potential of a solitary
wave are computed by the method of Tanaka (1986). (These waveforms propagate
with negligible change in shape according to the operator expansion code with a flat
bottom.) The waveform is translated so that the crest is centred at xc, within the
region of uniform depth and such that the initial flow is negligible near the origin
and over the slope. The same waveform, reflected through x = L, is added to make
the potential periodic on a domain of length 2L. (Thus two solitary waves propagate
symmetrically towards an island between them.) No forcing or damping was used in
these computations. The geometric series of reference depths was truncated at h0/8,
although the domain includes a region with h 6 0.

The profiles and shoaling characteristics of solitary waves computed by the operator
expansion are quite close to those reported by Grilli et al. (1994), until near the time
of breaking. Figure 7 shows results for the case of a solitary wave with an initial
waveheight of 0.3h0 and slope s = 1/15. Times are adjusted so the crest passes over
the toe of the slope at t = 0. (Compare figure 4a of Wei et al. 1995.) In the last profile
shown, one sees that the non-physical small-scale instability described above has
arisen; shortly thereafter the numerical derivatives diverge. The time of this profile is
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Figure 8. Profiles of a solitary wave shoaling on a plane slope. The initial amplitude is 0.2h0 and
the slope is 1:100, with a toe at x = 0. Dimensionless times t′ = t(g/h0)1/2: (a) 31.3; (b) 40.0; (c)
53.2; (d) 61.1; (e) 66.6.

very close to the onset of breaking as observed in the boundary element computation
and the experiment. For steeper slopes, when there is significant runup, the operator
expansion sometimes exhibits other spurious instabilities; the explanation and possible
remedies for these await further study.

Figure 8 shows results of a computation with initial waveheight of 0.2h0 and slope
s = 1/100. (Compare figure 4a of Wei et al. 1995.) Again, the last profile shown
corresponds to a time near the breaking point. In this case, the operator-expansion
computation is smooth until somewhat later than the onset of breaking in the
boundary-element code; the waveform becomes progressively sharper, but its height
does not increase significantly. This result differs from the extended Boussinesq model
of Wei et al. (1995), which overshoals before the breaking point.

4.4. Diffraction by a shoal

The next application involves two horizontal dimensions; this experiment has been
used to validate diffraction models such as the mild-slope equation. Berkhoff, Booij
& Radder 1982 generated time-harmonic waves propagating at an oblique incidence
angle over a sloping plane surmounted by an ellipsoidal shoal. The range of depths
is similar to that of the bar experiment discussed above, so we expect the second
harmonic to attain a significant amplitude. (Temporal information was not reported
by Berkhoff et al.)

The depth is given in a coordinate system (x′, y′), rotated by 20◦ from the (x, y)
coordinates of the simulation:

h(x) =

{
0.45− 0.02(y′ + 5.84)− d(x′, y′) if y′ > −5.84
0.45 otherwise.

(4.4)

The shoal thickness d is given by

d(x′, y′) =

{
−0.3 + 0.5[1− (x′/5)2 − (y′/3.75)]1/2 if (x′/4)2 + (y′/3)2 < 1
0 otherwise.

(4.5)

All lengths here are in metres. Figure 9 illustrates the bottom topography. (The
orientation has been changed from the experimental coordinates so that waves
propagate in the positive y-direction.) The incident waves had a period of 1 s and
waveheight of 4.64 cm in the deep-water region.

For the simulation, the measurement geometry was embedded in a periodic domain
40 m by 44.4 m in extent. The topography given by (4.4) was used for x ∈ [0, 20] m
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Figure 9. Geometry of the shoal experiment, after Berkhoff et al. (1982). Depth contours range
from 0.15 (at top of figure) to 0.4 m (at bottom) at intervals of 0.05 m.
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Figure 10. Waveheight (cm) vs. location (m) along transects of the measurement area in the shoal
experiment (Berkhoff et al. 1982). Solid lines: computed by the present algorithm; 4: experimental
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x = 2 m; (g) x = 0 m; (h) x = −2 m.

and for y ∈ [−10, 15] m such that h > 0.1 m. This was extended with a flat region to
y = 20 m and a plane sloping from 0.1 m to 0.45 m, between y = 20 and y = 30 m.
The depth field was finally reflected across the line x = 20 m, effectively imposing
reflecting sidewall boundary conditions. Other simulations have shown that such
differences do not substantially change the waveheight in the measurement region.
An oscillating pressure source was located at y = −12.4 m, and friction was applied
in the neighbourhood of y = 23 m. Waveheights measured along various transects
in the experiment are compared with simulation results in figure 10. Overall the
shoaling and diffraction effects are modelled well by the operator expansion method.
The amplitudes in the focal region are slightly lower than in the experiment. Figure 11
depicts the surface elevation at the end of the simulation. The pattern of interference



Operator expansion for waves on variable depth 345

–10 10–5
–5

50

0

5

10

15

X (m)

Y
 (

m
)

Figure 11. Surface elevation in the shoal experiment, as computed by the present algorithm.
Brightness is proportional to instantaneous height above the minimum.

fringes and sharpened wave crests is quite similar to the one photographed by
Berkhoff et al.

5. Discussion
We have seen that the operator-expansion formalism allows faithful computations

of surface waves over variable depth. It handles diffraction and nonlinear effects on
shoaling and dispersion with accuracy similar to that of extended Boussinesq models,
without the long-wave approximation. A numerical implementation is not as robust
as boundary-element methods (e.g. it sometimes suffers from non-physical short-
wavelength instabilities, and the operator expansion itself does not converge for large
slopes), but is less demanding of computational resources, especially for problems
involving two horizontal dimensions. (The operation count is proportional to N logN
where N is the number of grid points or wavenumbers, and the storage requirements
are proportional to N, whereas boundary-element methods require solution of a dense
O(N) matrix problem at every time step.) It may be possible to handle breaking waves
and runup within this formulation by use of methods like those described by Kirby
(1997) and Dingemans (1997). Effects of surface tension can be incorporated easily,
as discussed by Milder (1990).

This work was supported in part by the US Office of Naval Research, Sensing and
Systems Division. I am indebted to Dr D. M. Milder for numerous conversations,
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and in particular for the suggestion to use multiple reference depths. A deep-water
simulation code written by Drs H. T. Sharp and D. M. Milder served as a prototype
for the code employed in this work. Dr K. Apfeldorf collaborated in preliminary
work on the variable depth problem. Dr M. W. Dingemans kindly provided the data
from the Delft bar experiments. I am grateful to an anonymous reviewer for several
corrections and for bringing the work of Craig and associates to my attention.

Appendix. Relation to the formalism of Craig & Sulem
The operator K associated with the kinetic energy in the Hamiltonian (2.3) is called

the Dirichlet–Neumann operator by Craig & Sulem (1993). They expand it in orders
of ζ to obtain a dynamical model for two-dimensional waves over uniform depth. By
substituting the expansion (2.25) into (2.4) we obtain

Kφ ∼ kH′φ+ [ζk2 − kH′ζkH′]φ
+ [−ζk2ζkH′ − 1

2kH
′ζ2k2 + 1

2ζ
2k3H′ + kH′(ζkH′)2]φ+ (∇ζ)2kH′φ− ∇ζ · ∇φ.

(A 1)

For fields varying in only one horizontal dimension, the k operator is equivalent to
−i∇, which obeys the derivative product rule. After a few lines of algebra we find
that the second-order truncation of Kφ in this case is equal to

K1φ = kH′φ+ kζkφ− kH′ζkH′φ− 1
2k

2ζ2kH′φ− 1
2kH

′ζ2k2φ+ kH′ζkH′ζkH′φ. (A 2)

For uniform depth h0, the H′ operator reduces to (tanh kh0)op, and then K1 is identical
to the truncated Dirichlet–Neumann operator G0 +G1 +G2 of Craig & Sulem (1993).
Similar use of the product rule verifies the equivalence of their equations of motion
to (2.1), (2.2) above, under the same restrictions.
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